

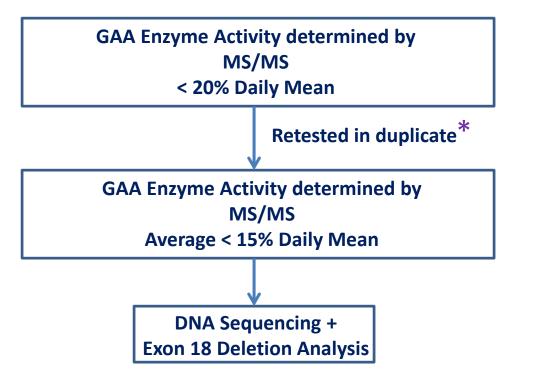
Newborn Screening for Pompe Disease in New York Identifies a Wide Spectrum of Variants in the GAA Gene

September 11, 2017

Colleen Stevens, Ph.D. Research Scientist NYSDOH Wadsworth Center Newborn Screening Program

Pompe Disease

- AKA: alpha-1,4-glucosidase deficiency; acid maltase deficiency; glycogen storage disease type II
- Lysosomal storage disorder accumulation of glycogen in lysosomes due to enzyme deficiency
- Autosomal recessive disease caused by mutations in the GAA gene
- Estimated incidence in the US is 1 in 28,000 40,000
- Treatment: Enzyme Replacement Therapy (Lumizyme)



Pompe Disease

Туре	Age at onset	Symptoms	Prognosis without treatment			
Classic Infantile-Onset	Birth to first few months of life	Cardiac defects; poor muscle tone and weakness; enlarged liver	Death by 1 year due to heart failure			
Non-classical (Atypical) Infantile-Onset	Within the 1 st year of life	Delayed motor skills; progressive muscle weakness	Death in early childhood due to respiratory problems			
Late-onset	Onset after the 1 st year of life	Progressive muscle weakness especially in legs and trunk; breathing difficulties	Variable			
NEW YORK JAPAT						

Wadsworth Center

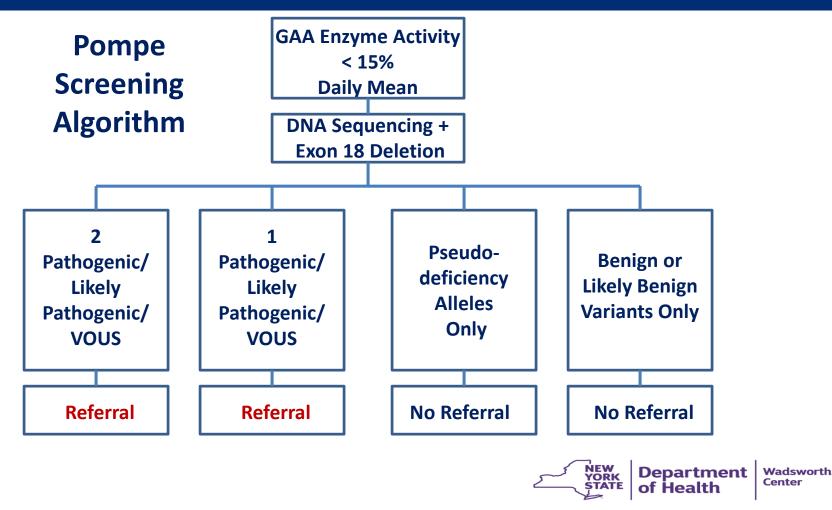
NYS Pompe Screening Algorithm

*recent modification to include testing on LSD 6-plex assay

Sanger Sequence Analysis of the GAA Gene

- DNA extracted from 3mm blood spot using an in-house developed method
- Amplify exons 2 20 and 20bp at the intron/exon boundaries in 14 fragments (amplicons)
- Sequence each amplicon bi-directionally
- Identify variants by comparison to reference sequence
- Perform a gap PCR gel-based assay to identify commonly reported exon 18 deletion
- Classify variants for pathogenicity

Classifying Variants for Pathogenicity


- Databases
 - Erasmus MC Pompe Center -558 variants
 - non-ACMG classifications (i.e. "severe", "potentially less severe")
 - in vitro data
 - links to publications
 - EmVClass (Emory) 313 variants
 - classification by Emory Genetics Lab
 - ClinVar 432 variants
 - classification based on submitter(s)
 - consensus
 - gnomAD and ExAC allele frequencies
- Publications
- Prediction programs PolyPhen; SIFT
- ACMG criteria for classification of variants

Emory Genetics Laboratory							
Home	Testing	Billing	EmVClass	Educational Materials	About EGL	Blog	Contact Us
EmVCla EGL's Vari		ification	Catalog				
S NCBI Reso	ources 🕑 How To						

5-5	NEW YORK STATE	Departmen of Health	nt	Wadsworth Center
	eventpotes, with the poet of agore	About gnornAD (gnornAT) is a resource developed top an enternational coefficient of grownAT) and any other source and parameter assaultation for parameter and making sammary data available for the under exercise projects, and making sammary data available for the under		NU2 minute locate 2.0 with browser data available for download
	Learnin - Grost PCINO Variant 1-522	925-004		
	Search for a gene or variant a	r region		

Pseudodeficiency alleles

Variants which result in lower GAA enzyme activity but which are NOT associated with development of Pompe disease

Variant (aa-3)	Variant (aa-1)	Variant (cDNA)	Allele Frequency (gnomAD)
p.Gly576Ser	p.G576S	c.1726G>A	0.017 (0.14 in East Asians)
p.Glu689Lys	р.Е689К	c.2065G>A	0.055 (0.24 in East Asians)
p.Asp91Asn	p.D91N	c.271G>A	0.021

Targeted genotyping of pseudodeficiency alleles to rule out false positives?

>46.7% of infants referred for diagnostic testing also had at least

1 pseudodeficiency allele

Wadsworth Center

GAA sequence analysis reduces referral rate

Screening began	October 1, 2014
# Babies screened (thru 8/18/2017)	676,573
# Babies sequenced	149
# Babies with common benign variants only	19
# Babies with common benign variants + pseudodeficiency alleles	23
# Babies referred for diagnostic evaluation	107

Reduction in Referrals using DNA analysis – 28.2%

Pompe Referrals (676,573 infants tested)

# of Infants Referred for Diagnostic Testing	107		1 in 6323				
# of Infants Diagnosed with Infantile-Onset Pompe Disease	5 (1 non-classical)		1 in 135,315				
# Infants with 2 Pathogenic variants	18	48	1 in 37,587	1 in			
# Infants with 1 Pathogenic variant + 1 VOUS	"Possible" 19 Late-Onset Pompe	Late-Onset	1 in 35,609	18,286	1 in 14,095		
# Infants with 2 VOUS	11	Disease	1 in 61,507				
# Likely Carriers (1 pathogenic, likely pathogenic or VOUS)		54	1	in 12,529			
York Departr						rtment alth	

Yes.

Variants Identified in Infantile-Onset Pompe Disease

Diagnosis	Variants	Notes			
Classical	p.Pro285Arg (c.854C>G)	Missense; Reported in IOPD			
	p.Pro768Leu (c.2303C>T)	Missense; Reported in IOPD			
Classical	p.Cys103Gly (c.307T>G)	Missense; Reported in both IOPD and LOPD			
	p.Gly334Cys (c.1000G>T)	Missense; VOUS			
Classical	p.Asp399ValfsX6 (c.1195-19_2190-17del)	Deletien, Depented in JODD			
	p.Asp399ValfsX6 (c.1195-19_2190-17del)	Deletion; Reported in IOPD			
Classical	p.Val766Ser (c.2297A>C)	Missense; Reported in both IOPD and LOPD			
	c.955+5G>C	Splice site; VOUS			
Non-	c32-13T>G	Splice site; Common in LOPD			
classical	p.Glu730Ter (c.2188G>T)	Nonsense; Reported in IOPD			
		STATE OF Health			

Wadsworth Center

Pathogenic/Likely Pathogenic Variants identified in > 2 Referred Infants:

Variant (cDNA)	Variant (aa)	Allele Freq. (gnomAD)	# Infants homozygous	# Infants heterozygous
c32-13T>G	-	0.003	5	28
c.2560C>T	p.Arg854Ter	0.0002	0	11
c.752C>T_ c.761C>T	p.Ser251Leu_ p.Ser254Leu	0.0004/ 0.0002	0	6
c.2238G>C	p.Trp746Cys	0.0003	0	6
c.2237G>C	p.Trp746Ser	0.00006	0	3
c.307T>G	p.Cys103Gly	0.00003	0	3

The VOUS Headache

- 49/107 Referrals (45.8%) had at least 1 VOUS
- 2/5 (40%) Infantile-onset cases were compound heterozygous for a VOUS and a known pathogenic variant
 - VOUS ≠ Benign
- 30/48 (62.5%) "Possible" Late-onset Pompe referrals had at least 1 VOUS making it difficult to provide clinicians with any prediction regarding phenotype
- 27/49 (55%) Referrals with VOUS also had pseudodeficiency alleles further complicating phenotype prediction

Variants of Uncertain Significance (VOUS) identified in >1 Referred Infants:

Variant (cDNA)	Variant (protein)	Allele Freq. (gnomAD)	# Infants homozygous	# Infants heterozygous
c.1888+5G>T	-	0.00002	0	5
c.2069C>T	p.Pro690Leu	0.00006	1	3
c.2051C>T	p.Pro684Leu	0.00007	0	3
c.1424C>T	p.Pro475Leu	0.00002	0	2
c.1320G>T	p.Met440Ile	0.0003	0	2
c.2509C>T	p.Arg837Cys	0.00002	0	2
c.1048G>A	p.Val350Met	0.0001	0	2

The VOUS Migraine

p.Val222Met (c.664G>A)

- 10/107 (9.3%) infants referred
 - 3 homozygous
- Erasmus database: "Non-pathogenic" based on in vitro data
- EmVClass database: "Benign" based on allele frequency
- gnomAD database: Allele frequency = 0.0007 overall
 - 0.005 in South Asians (4 homozygotes)
- Hungarian newborn screening program {Wittmann 2012 JIMD}
 - 16/64 infants screen positive were at least heterozygous for p.V222M
 - 5 homozygous
 - 1 compound het
 - 10 carriers
- No reports in affected individuals
- Pseudodeficiency allele?

Summary

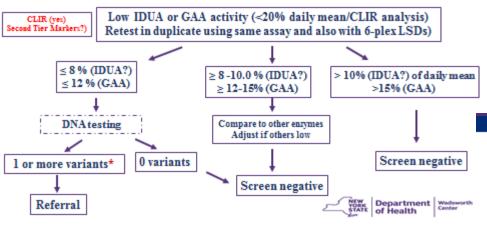
- 5 infantile-onset cases Pompe disease
 - All 5 infants are currently on ERT therapy
- DNA sequence analysis reduces referral rate
 - 28% pseudos or benign variants only
 - Prevents unnecessary diagnostic testing and parental stress
- 67 different reportable variants identified
 - 47 (70%) in only a single individual
- > 60% of infants referred with 2 GAA variants had at least 1 VOUS
 - Phenotype?
- Long term follow-up + Data sharing = Genotype-Phenotype Predictions

Acknowledgements

NYS Newborn Screening Program

Michele Caggana, ScD, FACMG Erin Hughes, MS Lisa DiAntonio, MS Sandra Levin, BS Carlos Saavedra, MD Joe Orsini, PhD Sarah Bradley, MS, CGC Beth Vogel, MS, CGC

Funding NICHD



September 5, 2017

Possible Future LSD Screening Algorithm

Borderlines: Correction for Multi-enzyme Retests

Example (also see SOP):

Average of GAA results from normal testing is 13.5% (a borderline result) GALC = 50% ABG = 80% GLA = 70% IDUA = 45% ASM = 120% (we do not care about ASM for purpose of adjustment)

New GAA Result:

13.5%(100/80) = 16.9% (this is above our current cutoff of 15%, so no second tier testing).

- We plan to convert to use of CLIR, but this method reduces second tier testing
- Conservative adjustment, uses highest value and only applied to borderline samples
- Could consider other options.... (e.g. average of others)

21

- 11