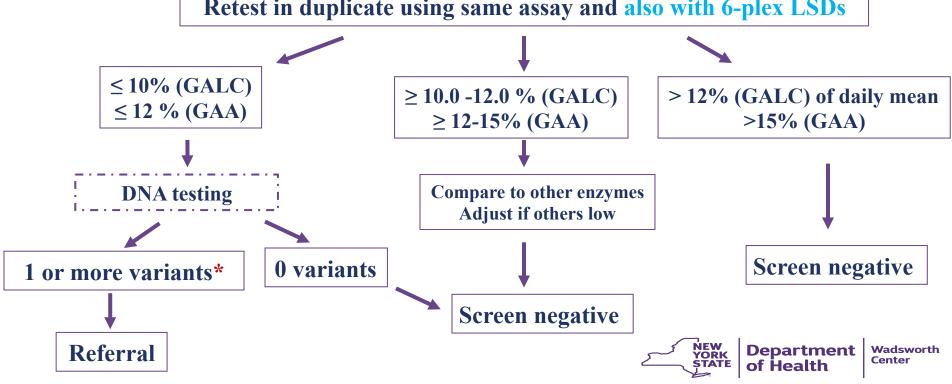


Department of Health

Wadsworth Center

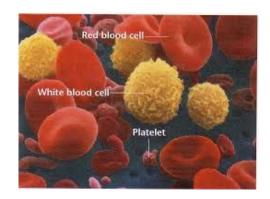

Comparison of use of cutoffs to CLIR in screening for Pompe disease and Krabbe disease

Joseph Orsini,
Monica Martin, Piero Rinaldo, Michele Caggana
September 11, 2017

<u>Joseph.Orsini@health.ny.gov</u>
518-473-8366

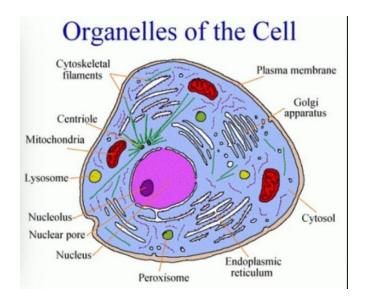
Krabbe/Pompe Screening Algorithm

Low IDUA or GAA activity (<20% daily mean/CLIR analysis) Retest in duplicate using same assay and also with 6-plex LSDs


Enzyme data: GALC example

Samples with:	% GALC	% GAA	% IDUA	% GLA	% GBA	% ASM
GALC <12%	8.3	60.9	73.2	48.8	64.3	95.2
GALC >300%	464	130	116	309	136	86

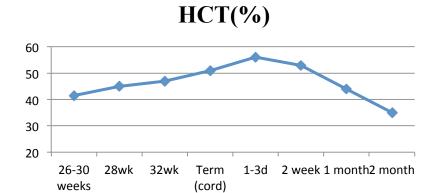
** Observation: when GALC very low (<12%) or very high (e.g.>300%), the other enzymes follow



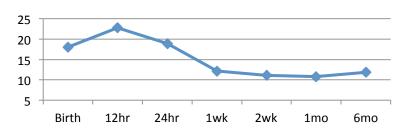
Dried blood spot screening

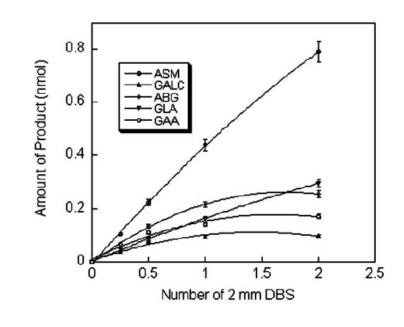
Markers:

Can be present in serum, red cells, white cells or some combination **Diagnostic tests**: target a specific component of the blood

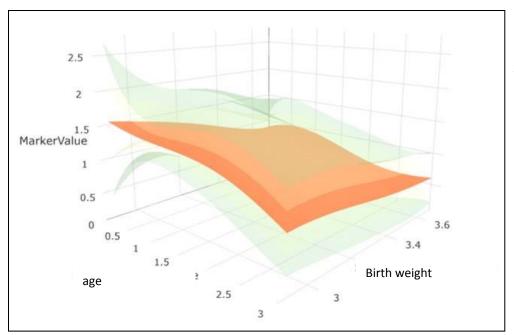

Dried blood spot variables

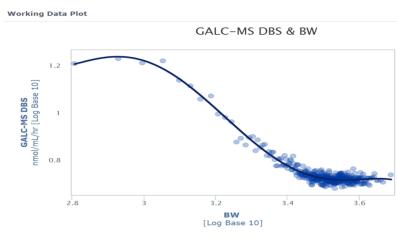
Dried Blood Spot variables: not accounted for in calculating marker concentrations


- 1. Red cells (<u>hematocrit</u>): affects **volume** of blood in punch: affecting all calculated marker concentrations
- 2. White cells (<u>leukocytes</u>): **contain lysosomes** for LSDs, the measured enzyme activity dependent on number of white cells
- 3. Exposure to heat, humidity in transport affect enzyme activities


Variables in dried blood screening

Total Leukocytes (x1000/mm³)




Data from The Harriet Lane Handbook

Li, Gelb et al, Clinical Chemistry, 2004

GALC versus birth weight and age: Marker Profile

Profile of GALC activity: vs. bwt and age

Value of multi-marker approach

- 1. **Biochemical dependency** of markers with biochemical dependencies can be handled (phenylalanine and tyrosine)
- 2. Physical effect of hematocrit and blood filling circle:
 - a. for many markers the concentrations will increase with increased hematocrit simply more blood in 3 mm punch b. some marker concentrations will be lower, as less serum in high hematocrit sample punches.
- 3. **Biological variables:** Markers **primarily present** in white or red cells

CLIR: looks at markers and all possible ratios of markers that are evaluated in the screen. At simplest level, using ratios corrects for variables having a common affect on all markers (Enzymes).

May also detect other relationships between markers

Department of Health

Wadsworth Center

Live Screening Summary

<u>Krabbe</u> <u>Pompe</u>

Started: 08-07-06 Started: 10-01-14

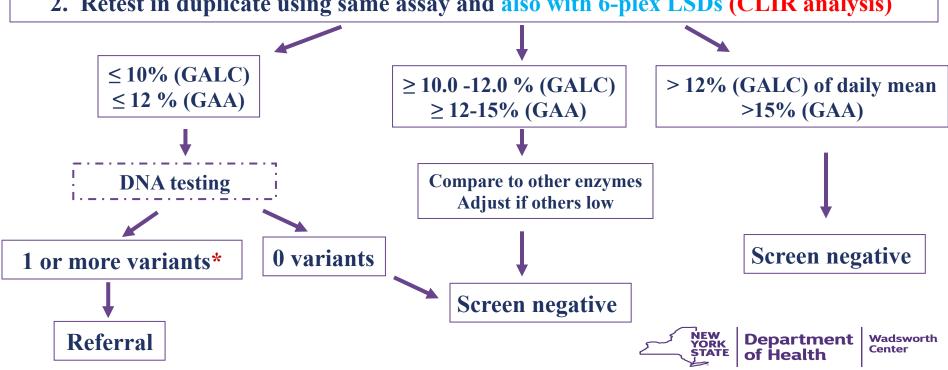
Samples Tested: ~2,650,000 Total Tested: 760,393

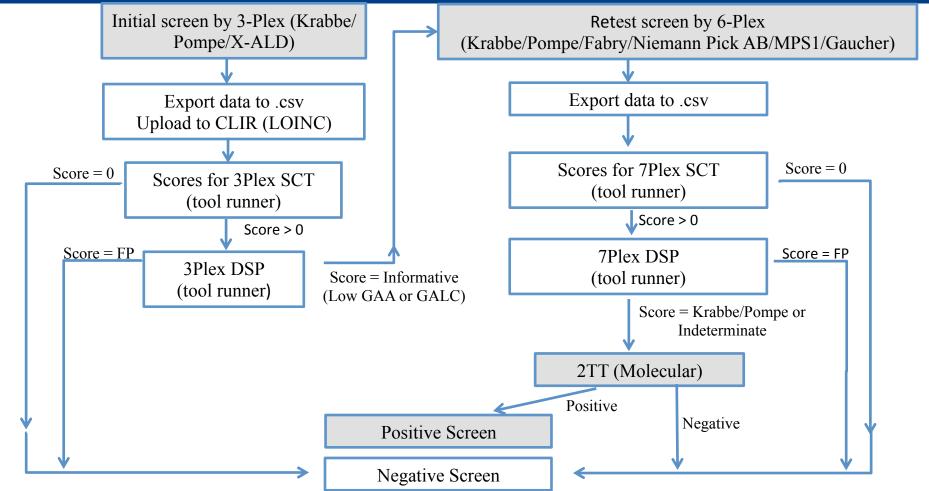
Referrals: 485 Referrals: 109

Infantile cases: 5 Infantile Cases: 5

Possible LOKD: 21 Possible LOPD: 50

 $PPV^* = 26/485 = 5.4\%$ $PPV^* = 55/109$: 50.4%


To date, none of the infants with a <u>possible</u> case have developed symptoms


Reminder: Krabbe/Pompe Screening Algorithm

1. Screen enzymes (run CLIR) Low IDUA or GAA activity (<20% daily mean)

2. Retest in duplicate using same assay and also with 6-plex LSDs (CLIR analysis)

Sample flow using CLIR

Limitations of Study

- Retrospective data:
 - Ran all samples through a 3 marker tool (GALC, GAA, C26-LPC
 - did not run six-plex enzyme tool on all samples that tested low for GALC and GAA.
- We tested many, but not all important positive samples (limited sample quantities)
- Affects how we look at numbers: had to project numbers based on results from a subset of samples that had full testing

CLIR: Retrospective Case Analysis

Disease	# Positives tested	# False Positives	#infantile cases	# Possible Late onsets
Krabbe	131	84	6 of 6	13 of 14*
Pompe	39	8	2 of 2	14 of 14

- All true Krabbe cases detected
- Case definitions are still very important
- In CLIR, can see location specific controls

CLIR Results compared to Cutoffs

<u>Date</u>	NY4 3-Plex	CLIR Retest Two enzymes*		NY (retest)		# of Spec Run
	Cases	Krabbe	Pompe	Krabbe	Pompe	with 7-Plex tool
June 2015- Aug 2017	586,763	555	298	5,026	743	289 of 853
Retest rate		0.09%	0.05%	0.86%	0.12%	~33% of data

	* Projected num	data(33%)		
		CLIR second tier	NY Cutoffs	
<u>Disease</u>	CLIR RT*	6 enzymes*	second tier	% change
Krabbe	555	113	248	-45%
Pompe	298	183	111	+165% h
Pompe (hybrid)	111 NY (retest)	68	111	-61%

Objectives of Study

- Can CLIR be easily added to lab work flow 🗸
- Compare performance of cutoffs versus CLIR
- Reduce number of required retests 🗸
- Reduce number of required second tier tests 🗸
 - Big reduction for Krabbe
 - Pompe can use some work/currently "hybrid" approach works better tool will be re-evaluated
- Reduced false positives, especially for Krabbe with no false negatives ✓

 | Department of the content of the

Next Steps

- Continue with prospective study
- Adjust tool to lower number of Pompe retest versus "hybrid" approach
- Evaluate MPS I and other LSDs with CLIR

Questions

Acknowledgements:

Monica Martin Piero Rinaldo

Enzyme testing: Chad Biski and Ryan Wilson DNA testing: Carlos Saavedra, Matt Nichols, Lea Krein, Erin Hughes, Colleen Stevens, Lisa Di Antonio Michele Caggana

NIH-NICHD (Pilot LSD funding)

