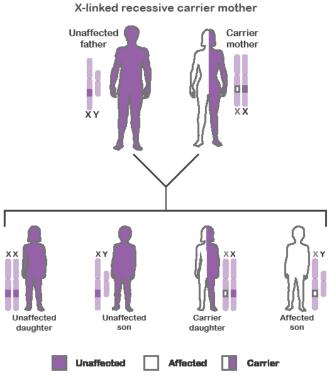


An Update on Newborn Screening for Adrenoleukodystrophy in New York State: A Review of Management Protocol Changes and Confirmed Cases

September 11, 2017

Beth Vogel, MS, CGC Newborn Screening Program Wadsworth Center NYS Department of Health


Outline

- ALD review
- NYS ALD data
- Management protocols
- Case review

ALD Review

- ALD is a peroxisomal disorder
- Caused by mutations in the ABCD1 gene
- X-linked inheritance
- Two phenotypes
 - Childhood cerebral onset and adult onset (adrenomyeloneuropathy)

NEW YORK

STATE

Department

of Health

Wadsworth Center

Symptoms Childhood Cerebral Onset

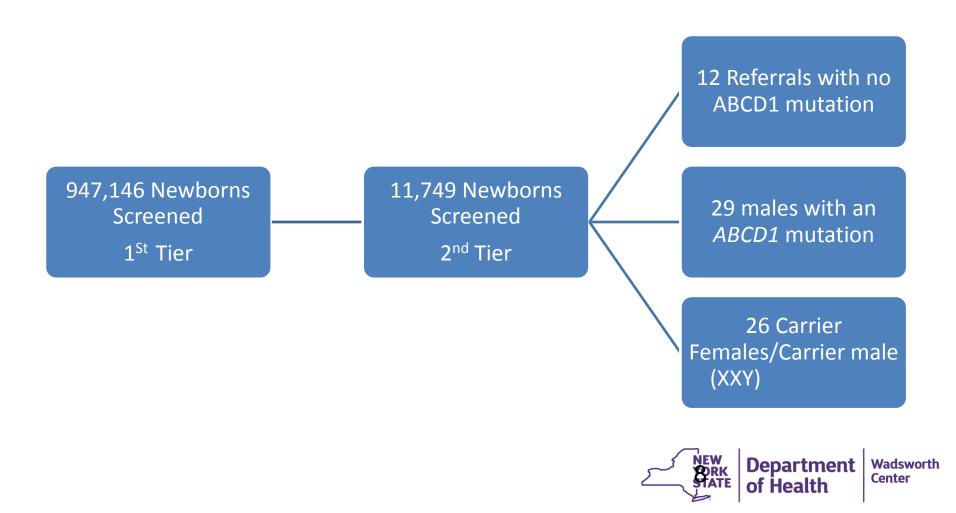
- 35 to 50% of males
- Onset varies from three to ten years
- Symptoms: Addison disease, cognitive disturbances, hyperactivity, seizures, psychosis, vision and hearing loss
- Vegetative state and death within two to four years of the onset of neurological symptoms

Adrenomyeloneuropathy (AMN)

- Onset of symptoms from the second to fourth decade
- Progressive weakness of the legs, paresis, sphincter disturbance and sexual dysfunction
- About 70% also have Addison disease

Carriers

- Approximately 10 to 50% of females with an *ABCD1* gene mutation have neurological symptoms
- Similar presentation to AMN
- Milder and more slowly progressive
- Onset of symptoms in the 30s



NYS Method of Screening for ALD

- 1st and 2nd tier: C26:0 lysophosphatidylcholine (C26:0 LPC)
 - 1st tier: MS/MS
 - -2^{nd} tier: MS/MS with selective HPLC
- 3rd tier: sequencing of ABCD1 gene

NYS ALD Screening Outcomes

Management

- Management protocols used to follow boys with a confirmed diagnosis of X-linked adrenoleukodystrophy since December 30, 2013
 - Modified based on experience

Newborn screening for X-linked adrenoleukodystrophy in New York State: Diagnostic protocol, surveillance protocol and treatment guidelines

B.H. Vogel ^{a,*}, S.E. Bradley ^a, D.J. Adams ^b, K. D'Aco ^c, R.W. Erbe ^d, C. Fong ^c, A. Iglesias ^e, D. Kronn ^f, P. Levy ^g, M. Morrissey ^a, J. Orsini ^a, P. Parton ^h, J. Pellegrino ⁱ, C.A. Saavedra-Matiz ^a, N. Shur ^j, M. Wasserstein ^k, G.V. Raymond ¹, M. Caggana ^a

Asymptomatic Boys in Childhood

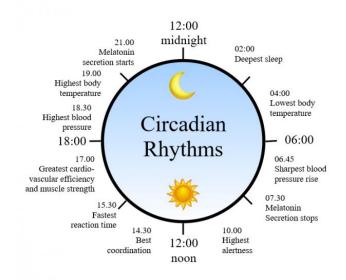
	Timing	Frequency
Endocrine		
Clinical evaluation	Age 12 months - 18 years	At least annually
АСТН	Age 6 months- 18 years	Every 6 months
Cortisol	Age 6 months- 18 years	Every 6 months
Neurology		
Clinical evaluation	Age 6 months - 18 years	Annually
Brain MRI without contrast	12 months and 24 months	Annually
Brain MRI without contrast	Age 36 months - 10 years	Every 6 months
Brain MRI without contrast	Age 10 years - 18 years	Annually
Genetics		
Clinical evaluation and counseling	Age 12 months - 18 years	At discretion of specialist

Changes to Neurology Surveillance Protocol

- First brain MRI delayed from 6 months to 12 months of age
 - The specialty centers across New York State report difficulty with interpretation and challenges with coordinating the brain MRI prior to six months of age.

Considerations for Referral to HCT

- HCT only recommended during early stages of cerebral disease due to risk for complications and mortality rate
- ALD MRI Score


- ALD MR severity score is greater than one and less than nine

- performance IQ of greater than 80
- ALD MRI score of a boy with X-linked adrenoleukodystrophy should be independently confirmed by experts in ALD prior to recommendation for assessment for hematopoietic cell therapy

Endocrine Surveillance Protocol

- Difficulty interpreting ACTH and cortisol values in newborns prior to the regulation of the circadian rhythm
- Discussions are ongoing about the best approach
 Discussion about utility of a cosyntropin stimulation test
- Discussions ongoing by Pediatric Endocrine Society

ALD Case 1 (Baby Boy)

Newborn Screen Results:

C26:0 = 1.18 µM

 $HC26:0 = 0.84 \ \mu M$

DNA Results: Hemizygous for c.1979G>T (Variant of uncertain significance; other variants at this location reported in ALD; maternally inherited)

Follow-up Results:

C26:0 = 3.76 nmol/ml (Normal < = 1.30)

C26:0/C22:0 = 0.132 (Normal < = 0.023)

C24:0/C22:0 = 2.24 (Normal < = 1.39)

Diagnosis: Definite ALD

ALD Case 2 (Baby Boy)

Newborn Screen Results:

```
1<sup>st</sup> Specimen
```

```
C26:0 = 0.40 \ \mu M; HC26:0 = 0.26 \ \mu M
```

2nd Specimen

C26:0 = 0.39 µM; HC26:0 = 0.26 µM

DNA Results: Hemizygous for R163H mutation (reported in a symptomatic carrier)

Follow-up Results: Mild hypotonia C26:0 = 2.20 nmol/ml (Normal < = 1.30) C26:0/C22:0 = 0.039 (Normal < = 0.023) C24:0/C22:0 = 1.45 (Normal < = 1.39) Diagnosis: Definite ALD

ALD Case 3 (Baby Girl)

Newborn Screen Results:

- C26:0 = 0.65 µM
- $HC26:0 = 0.50 \ \mu M$

DNA Results: Heterozygous for Gln47Argfs*21 (Novel variant)

Follow-up Results:

Mutation not identified in either parent

Diagnosis: Carrier of ALD

ALD Case 4 (Baby Boy)

Newborn Screen Results:

C26:0 = 1.29 µM

HC26:0 = 1.33 µM

DNA Results: No ABCD1 mutation detected

Follow-up Results:

Hypotonia, poor feeding, distinctive facies, seizures, hepatic dysfunction, renal cysts, respiratory distress, small muscular VSD, pneumothoraces, hemorrhage on brain ultrasound

C26:0 = 2.960 nmol/ml (Normal < = 1.30)C26:0/C22:0 = 0.318 (Normal < = 0.023)C24:0/C22:0 = 1.289 (Normal < = 1.39)

PEX DNA testing: Two mutations in PEX1

Diagnosis: Definite Zellweger spectrum disorder

ALD Case 5 (Baby Girl)

Newborn Screen Results:

C26:0 = 0.56 µM

 $HC26:0 = 0.36 \ \mu M$

DNA Results: No *ABCD1* mutation detected; normal allelic variant c.*8G>C

Follow-up Results:

No abnormal clinical findings

```
C26:0 = 3.22 nmol/ml (Normal < = 1.30)
```

```
C26:0/C22:0 = 0.056 (Normal < = 0.023)
```

```
C24:0/C22:0 = 1.60 (Normal < = 1.39)
```

Normal plasmalogens

Normal ABCD1 MLPA studies

Normal VLCFA in father, mother and two brothers

Diagnosis: Possible peroxisomal disorder of unknown etiology, X-linked ALD ruled out

Center

Thank you! Questions?

