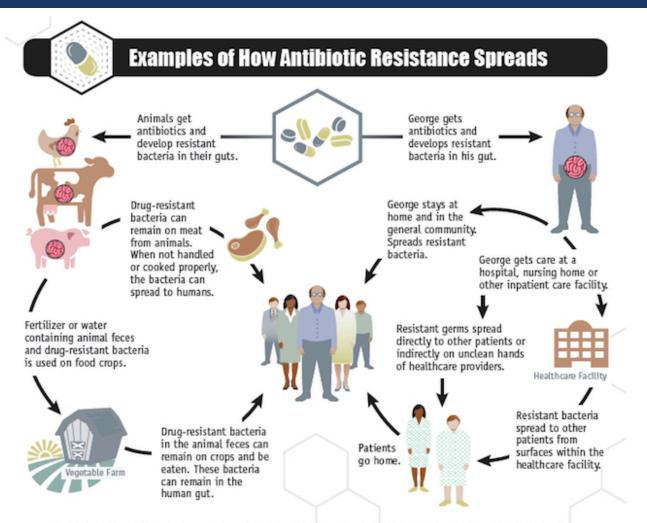


Do clinical microbiology laboratory data distort the picture of antibiotic resistance in humans and domestic animals?

Scott Weissman, MD 2 June 2018 scott.weissman@seattlechildrens.org



I have no financial conflicts of interest to disclose

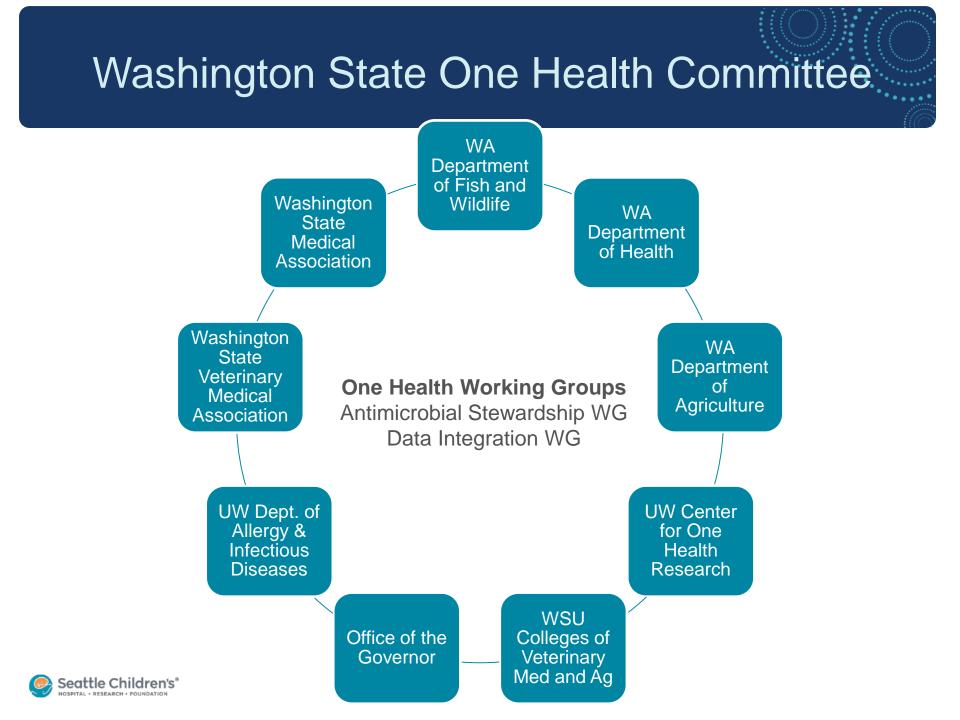
Vive la resistance.

Simply using antibiotics creates resistance. These drugs should only be used to treat infections.

The goals of the National Action Plan include:

- 1. Slow the Emergence of Resistant Bacteria and Prevent the Spread of Resistant Infections.
- 2. Strengthen National One-Health Surveillance Efforts to Combat Resistance.
- Advance Development and Use of Rapid and Innovative Diagnostic Tests for Identification and Characterization of Resistant Bacteria.
- Accelerate Basic and Applied Research and Development for New Antibiotics, Other Therapeutics, and Vaccines.
- Improve International Collaboration and Capacities for Antibiotic-resistance Prevention, Surveillance, Control, and Antibiotic Research and Development.

An integrated human, animal and environmental health approach to antimicrobial resistance


One Health concept endorsed by: WHO CDC USDA National Academy of Medicine

Integrated?

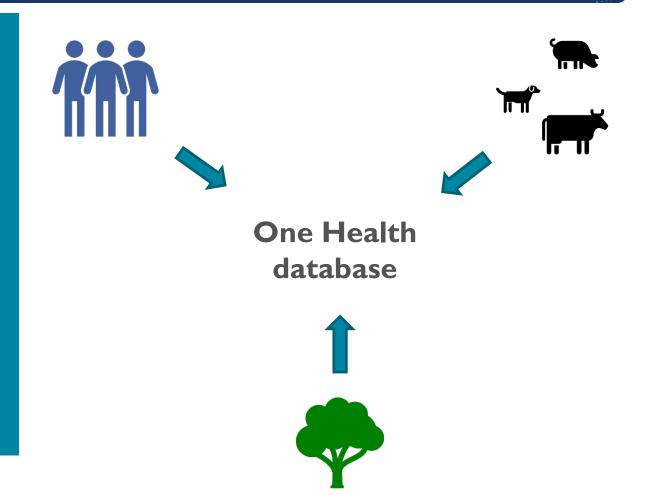
Data Integration Working Group

How do we look regionally at antimicrobial resistance in a One Health way?

Partying like it's 1999

results displayed as <u>% resistant</u>

GRAM POSITIVE ISOLATES	Number Tested	Ampicillin	Carbenicillin	Cefamandole	Cephalothin	Chloramphenicol	Clindamycin	Erythromycin	Gentamicin	Methicillin	Penicillin	Sulfisoxazole	Tetracycline	Tobramycin	T rimethoprim- sulfamethoxazole	Vancomycin
Enterococcus	75	0			-	1	4	25		100			72		1 07	0
Staph. aureus	627	87		0	0	0	2	6	3	0	87		8			0
Staph. epidermidis	61	48		2	2	2	39	39	28	20	48		33			0
Strept. grp. B	14	0		0	0	0	0	0	14	0	0	-	86			0
Strept. pneumoniae	26		3			0		0			0		00			
					GR	AMNEG	ATIVE	SOLAT	ES							
Acinetobacter	17	94	12	100	100	50			18	1		6	60	18	20	
Citrobacter freundii	11	54	.1.8	18	54	0			0			36	44	0	30	
Enterobacter cloacae	21	90	14	24	90	0			0			14	18	0	18	
Escherichia coli	421	32	32	0	10	17			0			30	25	0	3	
Haemophilus influenzae B	76	15				0						30	25	0	3	
Klebsiella oxytoca	35	98	100	1	1	0			0			1	4	0	9	
Klebsiella pneumoniae	60	92	92	0	1	1		· .	0			18	10	0	5	
Morganella morganii	5	100	0	20	100				0			40	20	0	20	
Neisseria meningitidis	9	1		1		0					0	0	20	U	20	
Proteus mirabilis	29	0	0	0	3	0			0		0	24	96		10	
Proteus vulgaris	7	100	0	52	100	0			0			24	80	0	10	
Pseudomonas aeruginosa	258	96	23	96	100	84			12			85	85	0	94	
Pseudomonas maltophilia	12	100	92	100	100	9		-	58			17	65	42	94	
Salmonella sp.	28	14	14 .	0	0	11			0							
Serratia marcescens	16	100	6	100	100	11			6			26		0		
Shigella sp.	10	0	0	0	0	<i>a</i>						50	77	6	11	
Yersinia enterocolitica	4	75	75	0	75	0			0			80.	40	0	0	


Limitations of the annual institutional antibiogram

- Static
 - Once a year
 - Trends tell stories!
- Presented as a flat file (eg, pdf format)
 - Severed from back-end data where richness resides
 - Back-end data may have limited clinical information
- Aggregated by species
 - Assumes source patients are equivalent
 - Overestimates resistance in healthier patients
 - Underestimates resistance in sicker patients
- Time-intensive if done by hand or by homegrown electronic method
- Not transparent
 - Especially with regard to de-duplication methodology
- Implies to caregivers that the infectious threat is primarily bacterial

One Health Data Integration Working Group

How do we look regionally at antimicrobial resistance in a One Health way?

Washington Integrated Surveillance for Antibiotic Resistance (WISAR)

Purpose: Offer a cross-sector look at antibiotic resistance by combining human, animal and environmental data in common database

- <u>Goal 1</u>: Integrates data on antimicrobial resistance across human, animal and environmental health sectors
- <u>Goal 2</u>: Build capacity to detect and prevent emergence of antibiotic resistance
- <u>Goal 3</u>: Support stewardship efforts across human, animal, and environmental sectors

Isolate datasets enrolled to date

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
Human Medicine:	0	0	0	0	0	0	0	0	7066	11024	11490	11196	11566	12237	13058	0	77637
NARMS Public Health Laboratory	0	٥	0	0	0	0	0	0	102	95	149	161	156	182	0	٥	845
Surveillance (Human Clinical):	U	U	U	U	U	U	U	U	102	"	143	101	10	102	U	U	043
Veterinary Medicine:	806	16	0	272	770	935	971	896	927	950	754	711	5650	11561	9566	285	35070
NARMS Public Health Laboratory	2015	2001	1122	2000	2014	2172	2271	2414	1771	2725	0	2004	1000	11.1	٥	0	44010
Surveillance (Non-human):	3015	2031	4155	3996	3944	51/2	55/1	5414	5//5	3735	0	3904	4650	114	0	U	44912
																Total	158464

Canine Antibiogram

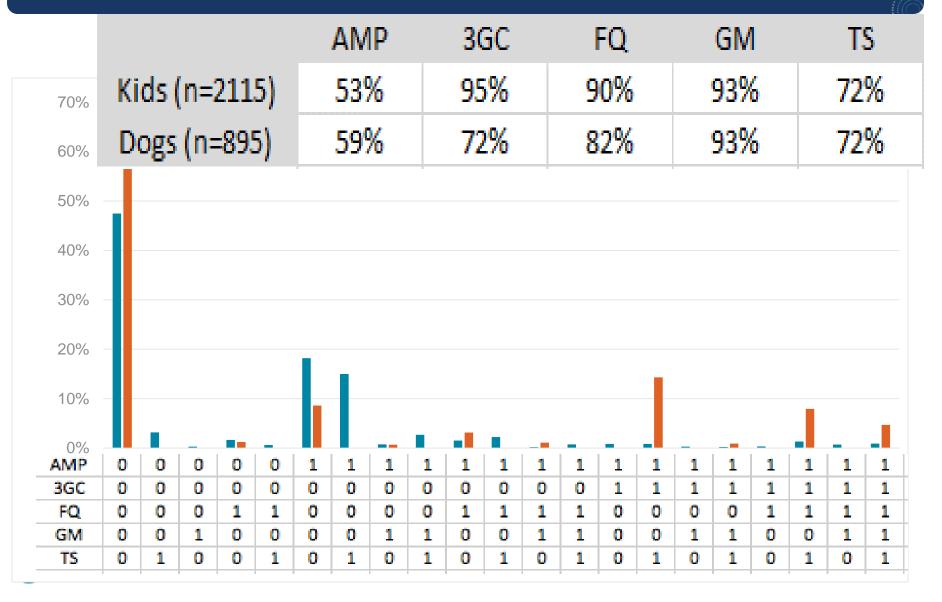
WISAR Database Canine Antibiogram for All Isolates, 2002-2017																		
Gram-Negative Bacteria	# Isolates (Max tested)	Ampicillin	Amoxicillin- Clavulanate	Cefovecin	Cefpodoxime	Ceftiofur	Ticarcillin	Ticarcillin- clavulanic acid	Enrofloxacin	Marbofloxacin	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphenicol			Doxycycline	Tetracycline
		% Susceptible																
Acinetobacter	143	2%	40%	18%	20%	18%	89%	94%	47%	30%	99%	92%	92%	3%			98%	
Bordetella	49						86%	92%	59%	98%	61%	59%	94%	98%			100%	
Enterobacter	266	1%	0%	31%	36%	24%	4%	80%	89%	92%	100%	96%	94%	85%			88%	50%
Escherichia coli	5178	69%	81%	70%	77%	83%	64%	77%	91%	84%	100%	92%	91%	90%			83%	93%
Klebsiella	203	1%	14%	85%	84%	81%	1%	91%	93%	93%	100%	96%	93%	90%			88%	50%
Proteus mirabilis	900	88%	94%	88%	93%	95%	91%	100%	97%	97%	99%	92%	91%	87%			0%	0%
Pseudomonas aeruginosa	1232	1%	0%	0%	0%	1%	90%	92%	58%	66%	98%	81%	17%	1%			1%	0%
Serratia marcescens	136	4%	2%	40%	41%	44%	16%	95%	55%	87%	97%	89%	93%	70%			5%	
Pasteurella	341	100%	100%	99%	100%	100%	100%	100%	100%	94%	100%	100%	99%	100%			100%	ſ
Gram-Positive Bacteria	# Isolates (Max tested)	Ampicillin	Amoxicillin- Clavulanate	Cefovecin	Cefpodoxime	Ceftiofur	Ticarcillin	Ticarcillin- clavulanic acid	Enrofloxacin	Marbofloxacin	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphenicol	Clindamycin	Erythromycin	Doxycycline	Tetracycline
				_					% Su		ible							
Enterococcus sp.	1915	86%	87%	1%	3%	5%	12%		42%	24%	47%	8%	42%	91%	7%	28%	73%	56%
Staphylococcus sp.	5261	30%	76%	76%	75%	76%	45%	76%	71%	77%	100%	76%	80%	87%	70%	70%	71%	82%
Streptococcus sp.	1185	95%	100%	97%	99%	99%	98%	100%	65%	72%	73%	83%	87%	97%	90%	7%	78%	59%
	В	ug-dru	g comb	inatio	ns wit	h <30 i	solate	s are no	t show	n in a	ntibio	gram						

Feline Antibiogram

		w	ISAR Da	tabase	e Felin	e Antik	biograr	n for Al	Isolate	es, 2002	2-2017							
Gram-Negative Bacteria	# Isolates (Max	Ampicillin	Amoxicillin- Clavulanate	Cefovecin	Cefpodoxime	Ceftiofur	Ticarcillin	Ticarcillin- clavulanic acid	Enrofloxacin	Marbofloxacin	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphenicol			Doxycycline	Tetracycline
	tested)	% Susceptible																
Enterobacter	46	0%	0%	38%	63%	17%	3%	87%	95%	95%	98%	95%	98%	90%			92%	
Escherichia coli	1751	71%	87%	86%	89%	91%	69%	85%	95%	90%	99%	94%	96%	94%			85%	96%
Proteus mirabilis	32	83%	88%			90%							100%					
Pseudomonas aeruginosa	123						83%	85%	71%	90%	98%	93%						
Pasteurella	199	100%	100%	100%	100%	100%	100%	100%	100%	100%	96%	98%	98%	100%				100%
Gram-Positive Bacteria	# Isolates (Max	Ampicillin	Amoxicillin- Clavulanate	Cefovecin	Cefpodoxime	Ceftiofur	Ticarcillin	Ticarcillin- clavulanic acid	Enrofloxacin	Marbofloxacin	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphenicol	Clindamycin	Erythromycin	Doxycycline	Tetracycline
	tested)									sceptik								
Enterococcus sp.	822	92%	93%	0%	0%	2%	10%	30%	45%	28%	5%	6%	38%	92%	4%	32%	74%	60%
	679	58%	82%	81%	79%	82%	62%	81%	85%	86%	93%	91%	89%	95%	76%	76%	93%	100%
Staphylococcus sp.	0,5																	
Staphylococcus sp. Streptococcus sp.															73%			

Bovine Antibiogram

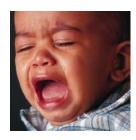
WISAR Database Bovine Antibiogram for All Isolates, 2002-2017													
Gram-Negative Bacteria	# Isolates (Max tested)	Ampicillin	Amoxicillin- Clavulanate	Ceftiofur	Ticarcillin	Enrofloxacin	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphenicol			
		% Susceptible											
Escherichia coli	3572	92%	98%	98%	68%	95%	100%	98%	97%	96%			
Pasteurella	44	80%		98%		84%		82%	81%				
Salmonella	322	63%	81%	74%		98%	100%	92%	98%	82%			
Gram-Positive Bacteria	# Isolates (Max tested)	Ampicillin	Amoxicillin- Clavulanate	Ceftiofur	Ticarcillin	Enrofloxacin	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazol	Chloramphenicol	Clindamycin	Erythromycin	
						% S	uscep	tible					
Enterococcus sp.	4187	84%	91%	14%		30%		99%	87%	99%		32%	
Staphylococcus sp.	113	53%	72%	89%	29%	92%	100%	82%	86%	98%	90%	77%	
Bug-drug	combinati	ons w	ith <30	isolat	es no	ot sho	wnina	antibi	ogram				

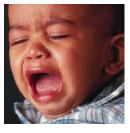


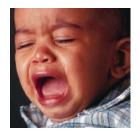
Poultry Antibiogram

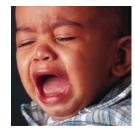
WISAR	Database Pou	ltry A	ntibiog	ram f	or All I	solates	s, 2002-2017	7	
Gram-Negative Bacteria	# Isolates (Maximum Tested)	Ampicillin	Amoxicillin- Clavulanic acid	Ceftiofur	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphanical	
						uscep			
Escherichia coli	8398	66%	85%	93%	99%	66%	95%	97%	
Salmonella	3817	65%	75%	84%	100%	84%	99%	97%	
Enterococcus sp.	9534					80%		98%	
Gram-Positive Bacteria	# Isolates (Max tested)	Ampicillin	Amoxicillin- Clavulanate	Ceftiofur	Amikacin	Gentamicin	Trimethoprim- sulfamethoxazole	Chloramphenicol	Erythromycin
					% S	uscept	tible		
Enterococcus sp.	9534					80%		98%	28%
Bug-drug c	ombinations	with <	<30 isola	ites a	re not s	shown	in antibiog	ram	

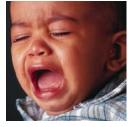
Susceptibility rates of deduplicated urinary *E. coli* from kids and dogs, 2014-2016

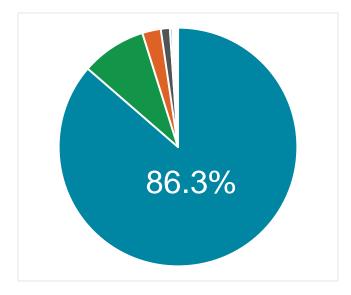


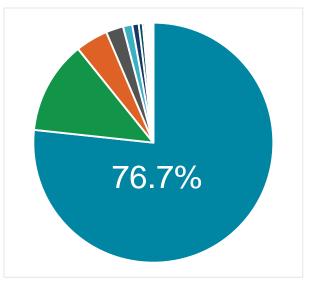

Susceptibility rates of deduplicated urinary *E. coli* from kids and dogs, 2014-2016



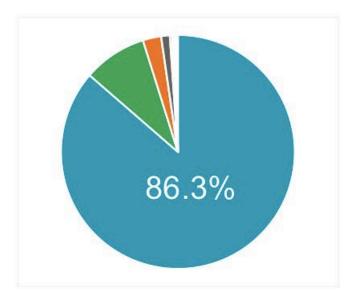

How to measure the unmeasured?

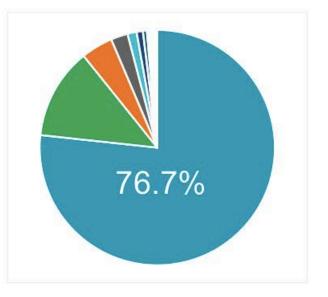






Proportion of culture-naïve patients falls with a longer time horizon (Seattle Children's data)




2016 only

2010-2016

Proportion of culture-naïve patients falls with a longer time horizon (Seattle Children's data)

2016 only

2010-2016

Antibiogram as artifact ... molded by what? by whom?

A picture is coming into focus...

Seattle Children's

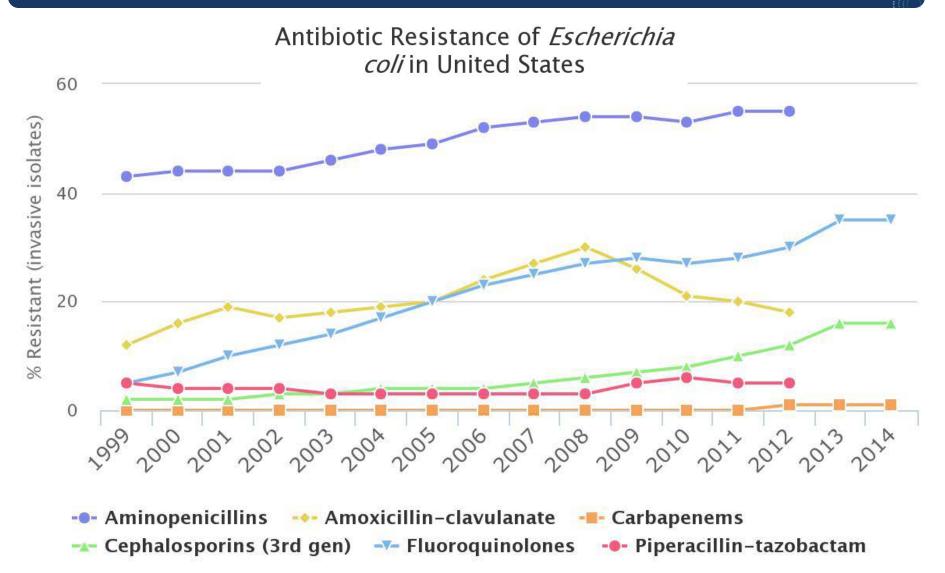
https://binocularshub.com/%EF%BB%BFtop-5-binoculars-for-birding/

Summary

- Participating facility/lab enrollment remains limited
 - Barriers identified in human health care facility engagement
 - Lagging engagement for environmental health samples
- Sampling, testing & reporting methods vary across sectors
- Comparisons between host species and sectors must be done with caution, if at all
- But is it possible to stratify clinical microbiology data for better comparability? or leverage knowledge of population sampling patterns to characterize clinical practice habits better?

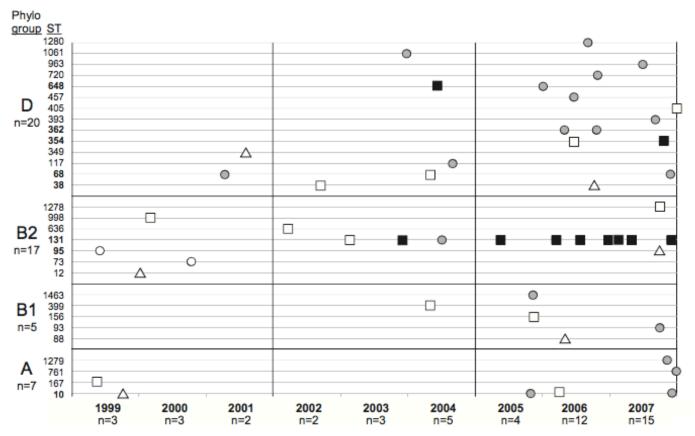
Acknowledgments

- Washington State One Health Committee
- Marisa D'Angeli & Kelly Kauber (WA Department of Health)
- Peter Rabinowitz, Lauren Frisbie, Anika Larson, Vickie Ramirez,, Marguerite Pappaioanou (UW Center for One Health Research)
 - CDC Epidemiology and Laboratory Capacity Grant
- Faye Sturtevant, Cheryl Adler (Phoenix Laboratories, Mukilteo, WA)
- Tim Bazler, Claire Burbick (WA Animal Disease Diagnostic Lab)


Seattle Children's® HOSPITAL • RESEARCH • FOUNDATION

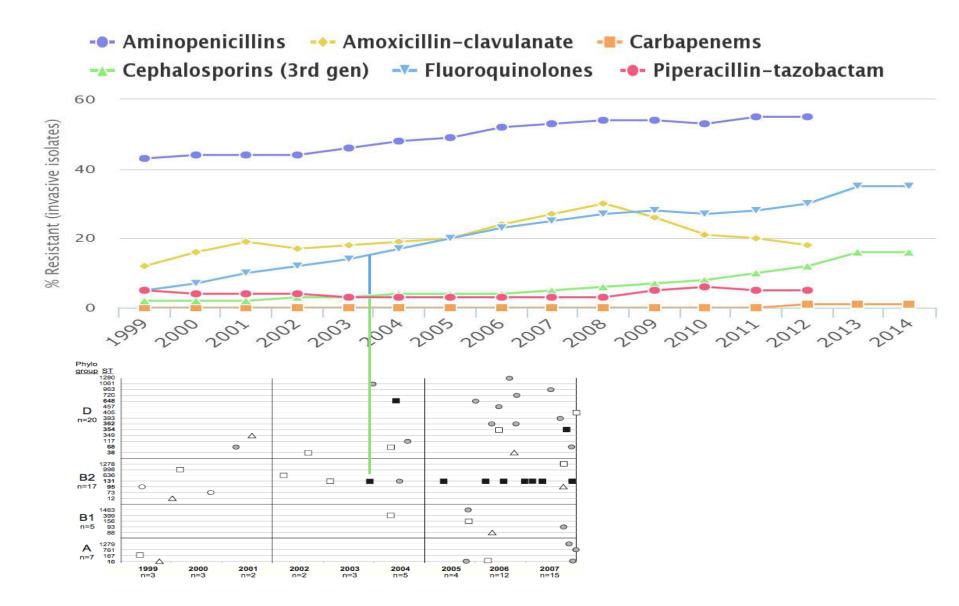
Limitations of the cumulative antibiogram

- Static
 - Once a year
 - Trends tell stories!
- Presented as a flat file (eg, pdf format)
 - Severed from back-end data where richness resides
 - Back-end data may have limited clinical information
- Aggregated by species
 - Assumes source patients are equivalent
 - Overestimates resistance in healthier patients
 - Underestimates resistance in sicker patients
- Time-intensive if done by hand or by homegrown electronic method
- Not transparent
 - Especially with regard to de-duplication methodology
- Implies that the threat is primarily bacterial



Trends tell stories

Center for Disease Dynamics, Economics & Policy (cddep.org)

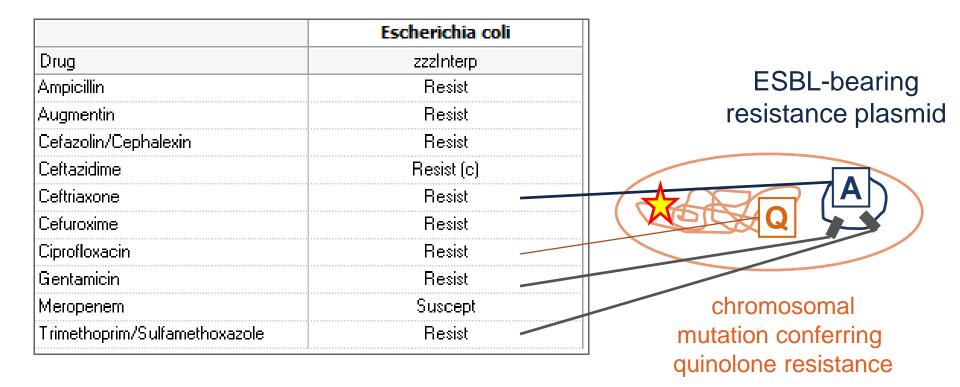

Trends tell stories

Key: Bold STs have more than 1 representative. Squares: Isolates carrying Class A enzymes. Black squares: Isolates carrying CTX-M-15. Circles: Isolates carrying Class C enzymes. Grey circles: Isolates carrying CMY-2. Triangles: Isolates with no enzyme identified.

Fig. 1. Phylogenetic and temporal distribution of 49 Escherichia coli isolates resistant to extended-spectrum cephalosporins at Seattle Children's Hospital (Seattle, WA) during 1999–2007. ST, sequence type.

Late 2007

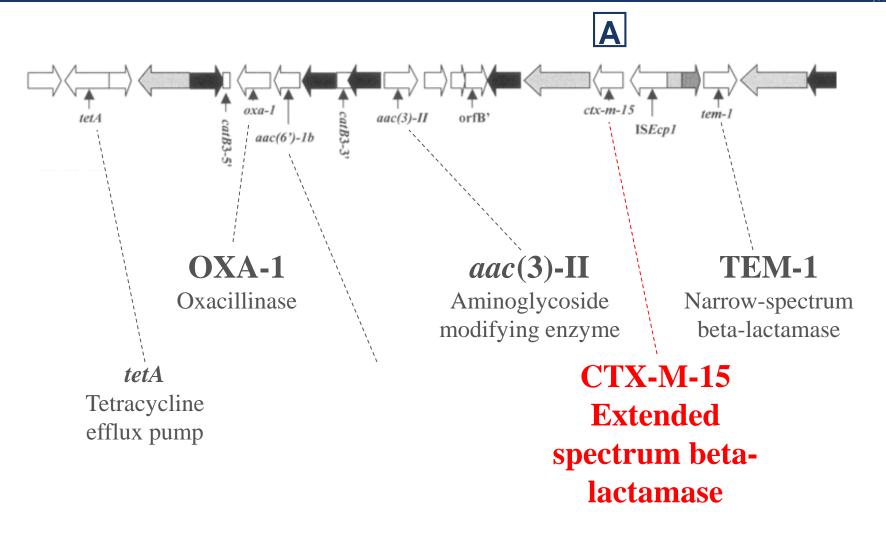
Journal of Antimicrobial Chemotherapy (2008) **61**, 273–281 doi:10.1093/jac/dkm464 Advance Access publication 11 December 2007


Intercontinental emergence of *Escherichia coli* clone O25:H4-ST131 producing CTX-M-15

Marie-Hélène Nicolas-Chanoine^{1,2*}, Jorge Blanco³, Véronique Leflon-Guibout¹, Raphael Demarty¹, Maria Pilar Alonso⁴, Maria Manuela Caniça⁵, Yeon-Joon Park⁶, Jean-Philippe Lavigne⁷, Johann Pitout⁸ and James R. Johnson⁹

¹Service de Microbiologie, Hôpital AP-HP Beaujon, 92110 Clichy, France; ²Inserm, U-773, Faculté de Médecine D. Diderot, Université Paris 7, Paris, France; ³E. coli Reference Laboratory, Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Santiago de Compostela, Lugo, Spain; ⁴Laboratory of Clinical Microbiology, Complejo Hospitalario Xeral-Calde, Lugo, Spain; ⁵Antibiotic Resistance Unit, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal; ⁶Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Kangnam St Mary's Hospital, Seoul, South Korea; ⁷Laboratoire de Bactériologie, Virologie et Parasitologie, CHU de Nîmes, Nîmes, France; ⁸Calgary Laboratory Services and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada; ⁹Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN, USA

Seattle Children's HOSPITAL + RESEARCH + FOUNDATION


Building a better superbug: Sequence Type 131

plasmid borne multidrug resistance genes

Resistance plasmids – genetic basis for linkage of multiple resistance genes

Lavollay et al (2006) AAC 50:2433.