DEPARTMENT OF HEALTH

Construction, Communication and Collaboration: A fellow's Tale of TwoTwin Cities

Xiong (Sean) Wang DVM, Ph.D APHL-CDC Bioinformatics Fellow (Alumni)

APHL Annual Meeting

June 2nd, 2018 Pasadena, CA

A little bit about me

- I never read " A Tale of Two Cities" before
- Trained as a veterinarian in China
- Have long-lasting interest in Public Health
- Ph.D in studying veterinary infectious disease viral genomics and host-pathogen interaction utilizing Next-generation sequencing (NGS)
- 2016 APHL-CDC Bioinformatics Fellow
- First fellow who was placed in a state public health laboratory
- As of yesterday, I took the role as sequencing and bioinformatics unit supervisor of Minnesota Public Health Laboratory

Dream VS. Reality

• What I thought I am stepping into:

• What I actually stepped into:

Bioinformatician at CDC vs. Bioinformatician at State PHL

- Minnesota Department of Health bioinformatics infrastructure building
 - High-performance computing cluster
 - Cloud-based computing environment
 - MDH-Minnesota Supercomputing Institute (MSI) liaison, contract maintenance and renew
- Salmonella serotyping by Whole Genome Sequencing (WGS)
 - Pipeline design and building
 - Validation dataset analyses
 - SOP and its related document
- Minnesota ELC-AMD WGS and bioinformatics training
- *Clostridium difficile* WGS
- Foodborne outbreak isolates whole genome SNP phylogenetic analyses
- Streptococcus pneumonia serotyping by WGS

- Minnesota Department of Health bioinformatics infrastructure building
 - High-performance computing cluster
 - Cloud-based computing environment
 - MDH-MSI liaison, contract maintenance and renew
- Salmonella serotyping by Whole Genome Sequencing (WGS)
 - Pipeline design and building
 - Validation dataset analyses
 - SOP and its related document
- Minnesota ELC-AMD WGS and bioinformatics training
- *Clostridium difficile* WGS
- Foodborne outbreak isolates whole genome SNP phylogenetic analyses
- Streptococcus pneumonia serotyping by WGS

Three current models to build the bioinformatics infrastructure

The bioinformatics infrastructure and NGS data flow of MDH

Current working mode for MSI access

- Minnesota Department of Health bioinformatics infrastructure building
 - High-performance computing cluster
 - Cloud-based computing environment
 - MDH-MSI liaison, contract maintenance and renew
- Salmonella serotyping by Whole Genome Sequencing (WGS)
 - Pipeline design and building
 - Validation dataset analyses
 - SOP and its related document
- Minnesota ELC-AMD WGS and bioinformatics training
- *Clostridium difficile* WGS
- Foodborne outbreak isolates whole genome SNP phylogenetic analyses
- Streptococcus pneumonia serotyping by WGS

Salmonella serotyping by Whole Genome Sequencing (WGS)

Archive

Assay SOP, Equipment SOP * = New SOP

Salmonella serotyping by Whole Genome Sequencing (WGS)

Analyses workflow:

Bioinformatic pipeline workflow:

Speed: ~12 mins per sample under nodes=2:ppn=4,mem=48gb

- Minnesota Department of Health bioinformatics infrastructure building
 - High-performance computing cluster
 - Cloud-based computing environment
 - MDH-MSI liaison, contract maintenance and renew
- Salmonella serotyping by Whole Genome Sequencing (WGS)
 - Pipeline design and building
 - Validation dataset analyses
 - SOP and its related document

• Minnesota ELC-AMD WGS and bioinformatics training

- *Clostridium difficile* WGS
- Foodborne outbreak isolates whole genome SNP phylogenetic analyses
- Streptococcus pneumonia serotyping by WGS

Minnesota ELC-AMD WGS and bioinformatics training

- April 2017

- ✤ Non-O157 STEC stx and eae subtyping
- * Klebsiella *pneumoniae* vs. Klebsiella *variicola*

- March 2018

- WG SNP Clustering analyses using mock
 Salmonella outbreak
- K-mer based pathogen identification

Cloud-computing based

- March/April 2019

- Minnesota Department of Health bioinformatics infrastructure building
 - High-performance computing cluster
 - Cloud-based computing environment
 - MDH-MSI liaison, contract maintenance and renew
- Salmonella serotyping by Whole Genome Sequencing (WGS)
 - Pipeline design and building
 - Validation dataset analyses
 - SOP and its related document
- Minnesota ELC-AMD WGS and bioinformatics training
- Clostridium difficile WGS
- Foodborne outbreak isolates whole genome SNP phylogenetic analyses
- Streptococcus pneumonia serotyping by WGS

Clostridium difficile WGS - Crosswalk between Ribotype vs. MLST; Whole genome hq-SNP analyses using small scale data set

- ✤ 301 isolates from the 30 most common ribotypes (RT) in EIP collection
- Multilocus sequence typing (MLST) via WGS
- 7 house keeping gene scheme: adk, atpA, dxr, glyA, recA, soda, and tpi
- C. difficile MLST scheme was obtained from PubMLST.org
- StringMLST program used to determine sequence type (ST) and housekeeping gene alleles

- 22 (73%) of 30 RTs had a single ST
- 2 STs each had 2 RTs
- 8 (27%) RTs had multiple STs

Clostridium difficile WGS - Crosswalk between Ribotype vs. MLST; Whole genome hq-SNP analyses using small scale data set

• 17 isolates representing 7 epidemiologically linked clusters

							Collection
Accession number	Sequence Date	PFGE type	NAP type	MLST	SNP	Comment	Date
M2011005787	1/23/2018	CDSMA.00387	unnamed	15	0-4	Mom	2/17/2011
M2011006369	1/23/2018	CDSMA.00387	unnamed	15		Infant daughter	2/20/2011
M2012006634	1/23/2018	CDSMA.00362	NAP6	8	0.1	Roomate	3/6/2012
M2012007745	1/23/2018	CDSMA.00362	NAP6	8	0-1	Roomate	3/19/2012
M2011013403	1/23/2018	CDSMA.00156	unnamed	58	0.2	Husband	4/11/2011
M2011015232	1/23/2018	CDSMA.00273	unnamed	58	0-3	Wife	4/29/2011
M2011001586	12/15/2017	CDF160	NAP7	11		Incident Isolate	1/7/2011
M2011010298	12/15/2017	CDF160	NAP7	11	0-1	1st Recurrent Isolate	3/22/2011
M2011030385	12/15/2017	CDF160	NAP7	11		2nd Recurrent Isolate	9/16/2011
M2010018968	6/5/2017	CDF138	unnamed	34		Incident Isolate	6/22/2010
M2010024128	1/8/2018	CDF138	unnamed	34	0-1	1st Recurrent Isolate	7/29/2010
M2010032616	1/8/2018	CDF138	unnamed	34		2nd Recurrent Isolate	10/8/2010
M2011031951	8/17/2017	CDF191	NAP1	67		Incident Isolate	10/5/2011
M2011034071	1/8/2018	CDF191	NAP1	67	0-1	1st Recurrent Isolate	10/24/2011
M2011037294	1/8/2018	CDF191	NAP1	67		2nd Recurrent Isolate	11/30/2011
M2011017366	1/8/2018	CDF1	NAP4	2	0	Incident Isolate	5/18/2011
M2011024725	12/15/2017	CDF1	NAP4	2	U	1st Recurrent Isolate	7/28/2011

Clostridium difficile WGS - Crosswalk between Ribotype vs. MLST; Whole genome hq-SNP analyses using small scale data set

Maximum Likelihood Phylogeny utilizing Micro**react** <microreact.org>

0.073

Pairwise SNP matrix

			1	1	1	1	1				1	1	1				1
	M2011010298	M2011001586	M2011030385	M2011031951	M2011034071	M2011037294	M2011005787	M2011006369	M2012006634	M2012007745	M2011017366	M2011024725	M2010032616	M2010018968	M2010024128	M2011015232	M2011013403
M2011010298	0	C) 1	69890	67636	65599	68630	68581	68398	68653	68219	67633	62640	70457	65335	69350	69496
M2011001586	0	C) 1	80194	74901	71651	77075	5 77019	76480	76899	75704	74614	67366	80738	71170	77914	78016
M2011030385	1	1		68767	66529	64590	67430	67364	67247	67446	66982	66400	61488	69198	64164	68221	68290
M2011031951	69890	80194	68767	7 (1	0	20673	20667	20191	20319	20402	19935	16844	22053	18048	20526	20671
M2011034071	67636	74901	66529) 1	. 0	0	18944	18913	18610	18700	19131	18779	16408	19239	17340	18843	18880
M2011037294	65599	71651	64590) (0	0	17950	17964	17660	17700	18284	17986	5 16021	18092	16767	17858	17910
M2011005787	68630	77075	67430	20673	18944	17950	C) 4	10926	10893	11027	10799	9419	11560	10048	11177	11201
M2011006369	68581	77019	67364	20667	18913	17964	4	۰ ۱	10915	10897	11003	10800	9455	11586	10055	11186	11257
M2012006634	68398	76480	67247	20191	18610	17660	10926	5 10915	C	1	9588	9425	8305	10080	8847	9679	9766
M2012007745	68653	76899	67446	20319	18700	17700	10893	10897	1	C	9569	9398	8 8287	10105	8821	9705	9781
M2011017366	68219	75704	66982	2 20402	19131	18284	11027	11003	9588	9569	C) (8779	10361	9283	10366	10425
M2011024725	67633	74614	66400	19935	18779	17986	10799	10800	9425	9398) (8690	10111	. 9130	10135	10211
M2010032616	62640	67366	61488	3 16844	16408	16021	9419	9455	8305	8287	8779	8690	0 0) 1	. 1	3248	3307
M2010018968	70457	80738	69198	3 22053	19239	18092	11560) 11586	10080	10105	10361	. 10111	. 1	. 0	0	3865	3946
M2010024128	65335	71170	64164	18048	17340	16767	10048	3 10055	8847	8821	9283	9130) 1	. 0	0	3467	3515
M2011015232	69350	77914	68221	20526	18843	17858	11177	11186	9679	9705	10366	10135	3248	3865	3467	0	3
M2011013403	69496	78016	68290	20671	18880	17910	11201	11257	9766	9781	10425	10211	. 3307	3946	3515	3	0
																<u>18</u>	

In a APHL-CDC Bioinformatics Fellow perspective:

- Choose your host laboratory carefully based on your interests and future career plan (CDC vs. State Public Health Laboratory)
- Equipped yourself with great communication skills
- Ask for help whenever you need
- Collaboration Collaboration and collaboration
- Multi-tasking
- Eager to learn additional knowledge and skills outside of your expertise.

In a fellowship application reviewer perspective:

- The APHL-CDC Bioinformatics Fellowship should be a stepping stone for bioinformaticians to step into public health area.
- The fellowship should NOT be just another funding source.
- The fellowship should embrace diversified background yet hold ground rules:
 - Bioinformatics
 - Public Health
 - Infectious disease / human genetics

In a host laboratory/Advisor perspective (Dave Boxrud):

- Have a reasonable expectation for your fellow
- Have defined projects
- Mentorship is vital
- Need to give opportunities for advancement (training, conferences, present data at conferences...)
- Should have infrastructure for the fellow to be successful

Acknowledgement

Personnel:

Dave Boxrud (MDH) Sara Vetter (MDH) Joanne Bartkus (MDH) Christin Hanigan (APHL) Kelly Wroblewski (APHL) Greg Armstrong (CDC) Duncan MacCannell (CDC) Scott Sammons (CDC)

Institutions:

Thank you ! & Questions?

Xiong (Sean) Wang

Sean.Wang@state.mn.us

651-201-5050

